Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Fankhauser, Sarah (Ed.)ABSTRACT Visual representations in molecular biology tend to follow a set of shared conventions for using certain shapes and symbols to convey information about the size and structure of nucleotides, genes, and chromosomes. Understanding how and why biologists use these conventions to represent DNA is a key part of visual literacy in molecular biology. Visual literacy, which is the ability to read and interpret visual representations, encompasses a set of skills that are necessary for biologists to effectively use models to communicate about molecular structures that cannot be directly observed. To gauge students’ visual literacy skills, we conducted semi-structured interviews with undergraduate students who had completed at least a year of biology courses. We asked students to draw and interpret figures of nucleotides, genes, and chromosomes, and we analyzed their drawings for adherence to conventions for representing scale and abstraction. We found that 77% of students made errors in representing scale, and 86% of students made errors in representing abstraction. We also observed that about half of the students in our sample used the conventional shapes and symbols to represent DNA in unconventional ways. These unconventional sketches may signal an incomplete understanding of the structure and function of DNA. Our findings indicate that students may need additional instructional support to interpret the conventions in common representations of DNA. We highlight opportunities for instructors to scaffold visual literacy skills into their teaching to help students better understand visual conventions for representing scale and abstraction in molecular biology.more » « lessFree, publicly-accessible full text available August 21, 2026
-
Pandey, Sumali (Ed.)ABSTRACT Scientific publications, textbooks, and online educational resources rely on illustrated figures to communicate about molecular structures like genes and chromosomes. Published figures have the potential to shape how learners think about these molecular structures and their functions, so it is important that figures are clear, unambiguous, and free from misleading or incorrect information. Unfortunately, we found numerous examples of figures that contain representations of genes and chromosomes with errors that reflect common molecular biology misconceptions. We found published figures featuring Y-shaped Y chromosomes, replicated chromosomes incorrectly shown with different alleles on sister chromatids, single genes portrayed as wide bands on chromosomes, and genes consisting of only a small number of nucleotides. Drawing on our research on student thinking about visual representations in molecular biology, we critique these published figures that contain such misconceptions and provide recommendations for simple modifications to figures that may help scientists, science illustrators, and science educators more accurately communicate the structure and function of genes and chromosomes.more » « lessFree, publicly-accessible full text available August 21, 2026
-
Wessner, David R (Ed.)Visual models are a necessary part of molecular biology education because submicroscopic compounds and processes cannot be directly observed. Accurately interpreting the biological information conveyed by the shapes and symbols in these visual models requires engaging visual literacy skills. For students to develop expertise in molecular biology visual literacy, they need to have structured experiences using and creating visual models, but there is little evidence to gauge how often undergraduate biology students are provided such opportunities. To investigate students’ visual literacy experiences, we surveyed 66 instructors who taught lower division undergraduate biology courses with a focus on molecular biology concepts. We collected self-reported data about the frequency with which the instructors teach with visual models and we analyzed course exams to determine how instructors incorporated visual models into their assessments. We found that most instructors reported teaching with models in their courses, yet only 16% of exam items in the sample contained a visual model. There was not a statistically significant relationship between instructors’ self-reported frequency of teaching with models and extent to which their exams contained models, signaling a potential mismatch between teaching and assessment practices. Although exam items containing models have the potential to elicit higher-order cognitive skills through model-based reasoning, we found that when instructors included visual models in their exams the majority of the items only targeted the lower-order cognitive skills of Bloom’s Taxonomy. Together, our findings highlight that despite the importance of visual models in molecular biology, students may not often have opportunities to demonstrate their understanding of these models on assessments.more » « lessFree, publicly-accessible full text available July 2, 2026
-
Andrews, Tessa (Ed.)We explored undergraduate students' visual literacy by asking them to draw and interpret images of chromosomes and found that most students held incorrect or incomplete conceptions about chromosome structure and function. These findings stress the importance of teaching visual literacy skills in biology courses.more » « lessFree, publicly-accessible full text available March 1, 2026
-
A misconception among biology students is that breaking bonds in adenosine triphosphate (ATP) releases energy. This misconception may be related to imprecise representations of chemical bonding in common diagrams of ATP hydrolysis. We interviewed 33 undergraduate students and randomly assigned them to interpret a figure of ATP hydrolysis that either emphasized bond breaking in the reactants or the formation of new bonds in the products. Students who saw the figure emphasizing bond breaking were more likely to incorrectly classify ATP hydrolysis as endergonic, while students who saw the figure explicitly illustrating bond formation were more likely to use chemically-sound reasoning to describe the reaction.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Using analogies is a standard practice for both teaching and communicating ideas in science. Here we upend the traditional lesson, where the instructor provides a fully constructed analogy and explains it, by having the students develop a complex analogy themselves. This high engagement, peer learning activity engages students in critical thinking and analogical reasoning to foster deeper understanding of molecular processes and their interconnection. In this lesson, groups of students are asked to relate given items to DNA and to decide which level it best represents (nucleotide, gene, chromosome, or genome). Next they are tasked with extending the analogy to include other actors in the central dogma of molecular biology (RNA, protein, polymerases, ribosomes, etc.), and then to extend it even further (introns/exons, mutations, evolution, etc.). Finally, each group presents their analogy to the class, and they evaluate each other. We provide multiple examples of items that can be used in the activity, but others can be identified with some creativity. This exercise is also an excellent tool for instructors to discover where their students have gaps and need help making connections to bridge their understanding of processes in molecular biology.more » « less
-
Long, Tammy (Ed.)The General Biology–Measuring Achievement and Progression in Science (GenBio-MAPS) assessment measures student understanding of the Vision and Change core concepts at the beginning, middle, and end of undergraduate biology degree programs. Assessment coordinators typically administer this instrument as a low-stakes assignment for which students receive participation credit. While these conditions can elicit high participation rates, it remains unclear how to best measure and account for potential variation in the amount of effort students give to the assessment. To better understand student test-taking motivation, we analyzed GenBio-MAPS data from more than 8000 students at 20 institutions. While the majority of students give acceptable effort, some students exhibited behaviors associated with low motivation, such as low self-reported effort, short test completion time, and high levels of rapid-selection behavior on test questions. Standard least-squares regression models revealed that students’ self-reported effort predicts their observable time-based behaviors and that these motivation indices predict students’ GenBio-MAPS scores. Furthermore, we observed that test-taking behaviors and performance change as students progress through the assessment. We provide recommendations for identifying and filtering out data from students with low test-taking motivation so that the filtered data set better represents student understanding.more » « less
An official website of the United States government
